

Meta-Query-Net: Resolving Purity-Informativeness Dilemma in Open-set Active Learning

Dongmin Park (presenter), Yooju Shin, Jihwan Bang, Youngjun Lee, Hwanjun Song*, Jae-Gil Lee*

Data Mining Lab, KAIST

Active Learning

Goal: Maximizing the model performance while minimizing labeling costs

→ Querying the examples that look maximally-informative

"Making an **AL algorithm** = Making a good **query strategy**"

Summary of Standard AL Approaches

Uncertainty-based

$$x_{LC}^* = \underset{x}{\operatorname{argmax}} 1 - p_{\theta}(\hat{y}|x)$$

Querying the example that is least certain by the current model
 e.g., Softmax Confidence (CONF), Bayesian Disagreement (BALD), Learning Loss, ...

Diversity-based

Querying the example that **best represents** the entire data distribution
 e.g., Pre-clustering, Coreset, ...

Hybrid

BADGE, BatchBALD, ...

Open-set Active Learning: a more practical setup

- An unlabeled set consists of **only in-distribution** examples? → NO
 - Unlabeled data collected from casual data curation processes, e.g., web-crawling, inevitably contains open-set noise, so called **out-of-distribution (OOD)** examples

Importance of Handling OOD in AL

- OOD examples are usually uncertain & diverse, thus often being queried
- This wastes the labeling budget and significantly degrades AL performance

Datasets: [In: CIFAR10, OOD: SVHN], Noise Ratio: 50%

→ Hinders the usability of AL in real-world applications!

Recent Open-set AL Approaches

CCAL (ICCV'21)

- > Learns two contrastive learners for calculating informativeness and OODness, respectively
- > Combines the two scores into a final query score using a **heuristic balancing rule**
- SIMILAR (NeurIPS'21)

SCMI	$I_f(\mathcal{A};\mathcal{Q} \mathcal{P})$
FLCMI	$\sum_{i \in \mathcal{U}} \max(\min(\max_{j \in \mathcal{A}} S_{ij}, \max_{j \in \mathcal{Q}} S_{ij}) - \max_{j \in \mathcal{P}} S_{ij}, 0)$
LogDetCMI	$\log \frac{\det(I - S_{\mathcal{P}}^{-1} S_{\mathcal{P}, \mathcal{Q}} S_{\mathcal{Q}}^{-1} S_{\mathcal{P}, \mathcal{Q}}^T)}{\det(I - S_{\mathcal{A} \cup \mathcal{P}}^{-1} S_{\mathcal{A} \cup \mathcal{P}, \mathcal{Q}} S_{\mathcal{Q}}^{-1} S_{\mathcal{A} \cup \mathcal{P}, \mathcal{Q}}^T)}$

$$\max_{\mathcal{A}\subseteq\mathcal{U}, |\mathcal{A}|\leq B} I_f(\mathcal{A}; \mathcal{I}|\mathcal{O})$$

- > Selects **a pure and core set** of examples by maximizing the distance coverage on the entire unlabeled data and jointly minimizing the distance coverage to the already labeled OOD data
- → Focus on increasing purity of a query set by effectively filtering out OOD examples

Purity-Informativeness Dilemma

"Should we focus on the purity throughout the entire AL period?"

- The optimal trade-off changes according to AL rounds & noise ratios!

Meta-query-net (MQ-Net)

- To find the **best balance** between *purity* and *informativeness*
- Learns a meta query-score function $\Phi(z_x; w)$
- Uses each round's query set as a self-validation set
- Can incorporate most existing AL scores and OOD scores

Objective of MQ-Net

 $l_{mce}(x) = \mathbb{1}_{[l_x=1]} l_{ce} \big(f(x;\Theta), y \big),$ $\downarrow \mathcal{L}(S_Q) = \sum_{i \in S_Q} \sum_{j \in S_Q} \max \Big(0, -\mathrm{Sign} \big(\ell_{mce}(x_i), \ell_{mce}(x_j) \big) \cdot \big(\Phi(z_{x_i}; \mathbf{w}) - \Phi(z_{x_j}; \mathbf{w}) + \eta \big) \Big)$ $s.t. \ \forall x_i, x_j, \ \text{if} \ \mathcal{P}(x_i) > \mathcal{P}(x_j) \ \text{and} \ \mathcal{I}(x_i) > \mathcal{I}(x_j), \ \text{then} \ \Phi(z_{x_i}; \mathbf{w}) > \Phi(z_{x_j}; \mathbf{w}),$ From a query set S_Q $Skyline \ regularization \ (unseen \ \text{for} \ \theta) \qquad (to \ preserve \ order \ dominance \ w.r.t \ purity \& \ informativeness)$

- Pairwise ranking loss according to the masked cross entropy
- Output priority: 1) Informative IN examples first and 2) IN examples > OOD examples
- Stable optimization with *skyline regularization*

Architecture of MQ-Net

Theorem 4.1. For any MLP meta-model \mathbf{w} with non-decreasing activation functions, a meta-score function $\Phi(z;\mathbf{w}): \mathbb{R}^d \to \mathbb{R}$ holds the skyline constraints if $\mathbf{w} \succeq 0$ and $z \in \mathbb{R}^d \succeq 0$, where \succeq is the component-wise inequality.

$$\forall x_i, x_j, \text{ if } \mathcal{P}(x_i) > \mathcal{P}(x_j) \text{ and } \mathcal{I}(x_i) > \mathcal{I}(x_j), \text{ then } \Phi(z_{x_i}; \mathbf{w}) > \Phi(z_{x_j}; \mathbf{w}),$$

Non-negative weights MLP

- Preserving order dominance between two examples w.r.t. purity and informativeness
- Being attributed to the properties of non-decreasing activation functions
- > [Implementation] Applying a ReLU function for each parameters **w** (=differentiable)
- → Achieve the skyline constraint without any complex loss-based regularization!

Active Learning with MQ-Net

Meta-input Conversion

• Can incorporate any AL score Q(x) and OOD score O(x)

- P(x) = Exp(Normalize(-O(x)))
- I(x) = Exp(Normalize(Q(x)))

Overall Procedure

Algorithm 1 AL Procedure with MQ-Net

```
INPUT: S_L: labeled set, U: unlabeled set, r: number of rounds,
     Θ: parameters of target model, w: parameters of MQ-Net
OUTPUT: Final target model \Theta_*
  1: \Theta_1, \mathbf{w}_1 \leftarrow Initialize the network parameters;
  2: for r=1 to r do
        /* Training the target model \Theta*/
        \Theta_* \leftarrow TrainingClassifier(S_L, \Theta_1)
        /* Querying for the budget b */
         S_O \leftarrow \emptyset;
         while C(S_Q) \leq b do
         S_Q \leftarrow S_Q \cup \arg\min(\Phi(U; \mathbf{w}));
         S_L \leftarrow S_L \cup S_O; \ U \leftarrow U - S_O;
         /* Training the meta-score function \Phi */
         for t = 1 to meta-train-steps do
            Draw a mini-batch \mathcal{M} and from S_Q;
            \mathbf{w}_{t+1} \leftarrow \mathbf{w}_t - \alpha \nabla_{\mathbf{w}_t} (\mathcal{L}_{meta}(\mathcal{M}));
 14: return \Theta_{\star};
```

Experiments

• On three datasets (CIFAR10, CIFAR100, ImageNet50) with varying noise ratios (10%, 20%, 40%, 60%)

Table 1: Last test accuracy (%) at the final round for CIFAR10, CIFAR100, and ImageNet.

Datasets		CIFAR10 (4:6 split)			CIFAR100 (40:60 split)			ImageNet (50:950 split)					
Noise Ratio		10%	20%	40%	60%	10%	20%	40%	60%	10%	20%	40%	60%
Standard AL	CONF	92.83	91.72	88.69	85.43	62.84	60.20	53.74	45.38	63.56	62.56	51.08	45.04
	CORESET	91.76	91.06	89.12	86.50	63.79	62.02	56.21	48.33	63.64	62.24	55.32	49.04
	LL	92.09	91.21	89.41	86.95	65.08	64.04	56.27	48.49	63.28	61.56	55.68	47.3
	BADGE	92.80	91.73	89.27	86.83	62.54	61.28	55.07	47.60	64.84	61.48	54.04	47.80
Open-set	CCAL	90.55	89.99	88.87	87.49	61.20	61.16	56.70	50.20	61.68	60.70	56.60	51.16
AL	SIMILAR	89.92	89.19	88.53	87.38	60.07	59.89	56.13	50.61	63.92	61.40	56.48	52.84
Proposed	MQ-Net	93.10	92.10	91.48	89.51	66.44	64.79	58.96	52.82	65.36	63.08	56.95	54.11
% improve	over 2nd best	0.32	0.40	2.32	2.32	2.09	1.17	3.99	4.37	0.80	1.35	0.62	2.40
% improve	over the least	3.53	3.26	3.33	4.78	10.6	8.18	9.71	16.39	5.97	3.92	11.49	20.14

- MQ-Net achieves the **best accuracy** for all datasets
- MQ-Net is the most **robust** to any noise ratios
- In conclusion, MQ-Net finds the best trade-off between purity and informativeness

Takeaway & Ablation Studies

1. When the AL round progresses,

Purity (early) → Informativeness (late)

2. When the noise ratio increases,

(b) The final round's output of MQ-Net with varying noise ratios (10%, 20%, 40%, and 60%).

Informativeness (small) → Purity (high)

Table 2: Effect of the meta inputs to MQ-Net.

Dat	CIFAR10 (4:6 split)					
Noise	10%	20%	40%	60%		
Standard AL	BADGE	92.80	91.73	89.27	86.83	
Open-set AL	Open-set AL CCAL		89.99	88.87	87.49	
MQ-Net	CONF-ReAct	93.21	91.89	89.54	87.99	
	CONF-CSI	93.28	92.40	91.43	89.37	
	LL-ReAct	92.34	91.85	90.08	88.41	
	LL-CSI	93.10	92.10	91.48	89.51	

Table 3: Efficacy of the self-validation set.

Da	taset	CIFAR10 (4:6 split)						
Noise Ratio		10%	20%	40%	60%			
MQ-Net	Query set	93.10	92.10	91.48	89.51			
	Random	92.10	91.75	90.88	87.65			

Table 4: Efficacy of the skyline constraint.

Noise Ratio		10%	20%	40%	60%
	w/ skyline w/o skyline	93.10	92.10	91.48	89.51
MQ-Net	w/o skyline	87.25	86.29	83.61	81.67

THANK YOU Any Question?